skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 30, 2026
  2. Free, publicly-accessible full text available March 26, 2026
  3. We have examined the origins of polytype selection during metal-mediated molecular-beam epitaxy of GaN nanowires (NWs). High-angle annular dark-field scanning transmission electron microscopy reveals [111]-oriented zinc blende (ZB) NWs and [0001]-oriented wurtzite (WZ) NWs, with SixNy at the interface between individual NWs and the Si (001) substrate. Quantitative energy dispersive x-ray spectroscopy reveals a notably higher Si concentration of 7.0% ± 2.3% in zinc blende (ZB) NWs than 2.3% ± 1.2% in wurtzite (WZ) NWs. Meanwhile, density functional theory calculations show that incorporation of 8 at. % Si on the Ga sublattice inverts the difference in formation energies between WZ and ZB GaN, such that the ZB polytype of GaN is stabilized. This identification of Si and other ZB polytype stabilizers will enable the development of polytype heterostructures in a wide variety of WZ-preferring compounds. 
    more » « less
  4. After decades of development, flow-based microfluidic biochips have become an increasingly attractive platform for biochemical experiments. The fluid transportation and the on-chip device operation are controlled by microvalves, which are driven by external pneumatic controllers. To meet the increasingly complex experimental demands, the number of microvalves has significantly increased, making it necessary to adopt multiplexers (MUXes) for the actuation of microvalves. However, existing MUX designs have limited coding capacities, resulting in area overhead and excessive chip-to-world interface. This paper proposes a novel gate structure for modifying the current MUX architecture, along with a mixed coding strategy that achieves the maximum coding capacity within the modified MUX architecture. Additionally, an efficient synthesis tool for the mixed-coding-based MUXes (LaMUXes) is presented. Experimental results demonstrate that the LaMUX is exceptionally efficient, substantially reducing the usage of pneumatic controllers and microvalves compared to existing MUX designs. 
    more » « less